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Abstract. The polygon exponent h associated with directed self-avoiding walks in two 
dimensions has been obtained by exact enumeration and series extrapolation methods. 
The value of h is found to be -1 .40 i0 .05  and the connectivity constant associated with 
such polygons is seen to be less than that of the corresponding walks. 

Self-avoiding walks (SAW) form a subset of random walks in which no walk crosses 
one site more than once. Self-avoiding polygons (SAP) are those SAW whose initial 
and final positions are separated by nearest-neighbour distances. 

The statistics of these SAP was studied because of their appearance in several 
physical problems. For example, the critical temperature of a two-dimensional king 
model was estimated, modelling the boundaries of up (or down) spin domains as SAP 

(Peierls 1936). The total number of distinct SAW ( G N )  and of SAP (C,) can be fitted 
to scaling forms G, - p: Nu-'  and C, - p: N h  for large values of the walk lengths 
( N ) .  Hammersley (1961) rigorously showed that, for ordinary SAW, pp = pw (which 
also follows from the n-vector model in the limit n + 0 (de Gennes 1979) as the specific 
heat and the susceptibility of this system diverge at the same critical temperature). 
The polygon exponent h obeys a scaling relation h = -dv where v is the average size 
exponent of ordinary SAW on a d-dimensional lattice. Recently, SAP statistics has been 
investigated for constrained SAW (Manna 1985a): two-choice SAP are seen to obey 
ordinary SAP statistics whereas spiral SAP follow a new critical behaviour. 

Directed self-avoiding walks (DSAW) form a subset of SAW in which stepping along 
certain specified lattice directions is forbidden (Chakrabarti and Manna 1983). The 
critical behaviour (leading 'singularity') of these walks is mean-field-like and is indepen- 
dent of the dimension (Cardy 1983, Redner and Majid 1983, Blote and Hilhorst 1983, 
Szpilka 1983) as the effects of excluded volume are suppressed by a major directed 
term. There are variants of DSAW models in two dimensions. In some models (with 
stepping forbidden in one or two lattice directions on a square lattice), polygon 
formation is not possible, but in some other models polygon formation is possible and 
weak excluded volume effects are present (e.g. in five-choice SAW on a triangular lattice 
(Redner and Majid 1983)). Recently, the effect of several anisotropic constraints on 
self-avoiding walk statistics has been studied (Manna 1985b). All these anisotropic 
SAW behave as DSAW in critical behaviour. In these models polygon formation is also 
possible. Although the excluded volume effects in these models do not show up in 
the leading behaviours of the walk statistics, they appear to manifest themselves in 
the polygon statistics. Here we consider two anisotropically constrained SAW (their 
critical behaviour is the same as DSAW) and one directed SAW model in two dimensions 
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and calculate the polygon exponent h for each of them. The model walks are the 
following (walk statistics belong to the directed SAW universality class in each case). 

( i )  On a square lattice, a step along a particular lattice direction does not allow 
its next step to be in the same direction (walk statistics discussed in Manna (1985b)). 

(i i)  On a triangular lattice, a step along a particular lattice direction does not allow 
its next step to be in the same direction. 

(iii) On a triangular lattice, a particular lattice direction is totally forbidden for 
stepping (walk statistics discussed in Redner and Majid (1983)). 

In these three models, the first two models are not directed SAW models from their 
definition. However, in these models choice of stepping is anisotropic with respect to 
a particular lattice direction. Recently it has been shown that any finite anisotropy 
(however small) imposed on the isotropic SAW, leads to DSAW critical behaviour (Manna 
and Chakrabarti 1984). Therefore, it is expected that models ( i )  and (ii) will also 
behave as DSAW. In fact, this has already been shown for model (i)  (Manna 1985b), 
and model (ii) is nothing but model ( i )  defined on a triangular lattice. We thus expect 
that model (ii) will also belong to the DSAW universality class. 

We have enumerated exactly all the distinct SAP (C,) for a particular perimeter 
length N. These simulation data have been given in table 1. We estimated the 
connectivity constant F and the polygon exponent h in the following way: 

Equation (1) has been adopted from Manna (1985a). In this equation, n is introduced 
and its value is suitably chosen to minimise oscillations in p N  values and for better 

Table 1. Exact enumeration data for the total number of distinct directed SAP: Ck, Ck  
and Cx correspond to models (i), ( i i )  and ( i i i )  respectively. 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 

8 

14 

54 

222 

940 

4 190 

19 248 

90 944 

436 786 

12 
24 
52 

150 
466 

1482 
4 988 

16 992 
58 828 

206 486 
731 912 

2618 612 

6 
8 

20 
36 

112 
272 
156 

2 120 
5 896 

17 064 
48 932 

142 996 
419 520 
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estimation of p after extrapolation. The actual value of p ( p N  for N + m) does not 
depend on n. The quantity x is analogous to the negative of the exponent h and the 
actual value of p does not depend on x. This is introduced to obtain different sets of 
p N  values. The choice of x helps to tune the value of the slope of the p N  against 
1/ N curve (from positive to negative) and thus reduce the error in the estimation of 
extrapolated p. 
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Figure 1. Plot of the connectivity constants p,.. for 
directed SAP for different models: ( a ) ,  ( b )  and ( c )  
correspond to models (i), ( i i )  and ( i i i ) ,  respectively. 
The points for x = 2.0, 1.5 and 1.0 are shown by (O),  

0 0.04 0.08 0.12 (U) and ( A )  respectively. The arrows on the vertical 
axes indicate the extrapolated values. 
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Using equation ( 1 )  we have calculated p N  with x = 1.0, 1.5 and 2.0 for all three 
models, extrapolated them and obtained pp of the polygons (see figure 1 ) .  Substituting 
these pp values in (2) we obtained h,  series. Extrapolation of these quantities gives 
h (see figure 2). For the first model we used n = 4  (to minimise oscillations) and for 
the other models n = 1. We obtained 2.370 i 0.005, 3.988 f 0.005 and 3.25 * 0.05 for 
the connectivity constants (pp) of the polygons of models (i), (ii) and (iii) respectively. 
The exponent h was found to be -1.40*0.01, -1.41 50.01 and -1.37iO.05 for models 
( i ) ,  ( i i)  and (iii), indicating h = -1.40 for all the models in d = 2. We compare these 
values of the connectivity constants for polygons to the corresponding values for walks. 
We have two values of the connectivity constants p, for walks of two models, namely 
for walks of types (i) and (iii). They are 2.535k0.005 (Manna 1985b) and 3.86*0.01 
(Manna 1986), respectively. It is, thus, to be noted that (at least for these two cases) 
the connectivity constants for walks are greater than those for polygons and the 
magnitude of the directed SAP exponent ( h )  is found to be very close to that for 
ordinary SAP ( h  = -1.5 (Nienhuis 1982)). It may be mentioned that, unlike the walk 
statistics, the polygon statistics of directed SAW are essentially governed by the excluded 
volume effect (where both the advanced and the retarded parts of the bare propagator 
enter the calculation) which makes any extension of the complex n-component ( n  + 0) 
field model for the directed polygons difficult and non-trivial, although such a treatment 
would indicate pp < p, (Cardy 1986). 
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Figure 2. Plot of the polygon exponent h ,  for direc- 
ted SAP for different models: ( a ) ,  ( b )  and (c) corre- 
spond to models ( i ) ,  (ii) and (iii), respectively. The 
arrows on the vertical axes indicate the extrapolated 
values. 
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